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Abstract 

In this research, we make use of the concept of large contraction and 
Krasnoselskii fixed point theorem to show that the totally nonlinear infinite 
delay Volterra integro-differential equation 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ,, tpdssxgstBtxhtatx
t

++−=′ ∫ ∞−
 

has a periodic solution. The need for the use of large contraction arises from the 
nonlinear term ( ) ( )( ).txhta  Several examples will be provided as illustration of 
our results. 

1. Introduction 

In this paper, we use a modified version of Krasnoselskii’s fixed point 
theorem and show the highly nonlinear infinite delay Volterra integro-
differential equation 
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( ) ( ) ( )( ) ( ) ( )( ) ( ),, tpdssxgstBtxhtatx
t

++−=′ ∫ ∞−
  (1.1) 

has a periodic solution. Throughout this paper, we assume all functions 
are continuous on their respective domains. 

Since we are dealing with the existence of periodic solutions of 
Equation (1.1), it is natural to ask that for the least positive real number 
T, we have 

( ) ( ) ( ) ( ) ( ) ( ),,,and,, stBTsTtBtpTtptaTta =++=+=+   (1.2) 

for all .R∈t  Since Equation (1.1) is totally nonlinear, to invert it into an 
integral equation problem, we will have to add and subtract a linear 
term. For some particular functions ( ),xh  this process destroys the 

traditional contraction property for one of the mappings in 
Krasnoselskii’s theorem. But the process replaces it with what is called a 
“large contraction”. For more on the existence of periodic solutions, we 
refer the readers to [2], [3], [4], and the references therein. Next, we state 
Krasnoselskii’s fixed point theorem. For its proof, we refer the readers to 
[6]. 

Theorem 1 (Krasnoselskiĭ). Let M  be a bounded convex nonempty 
subset of a Banach space ( )., ⋅B  Suppose that A and B map M  into B  

such that 

(i) ,, M∈yx  implies ,M∈+ ByAx  

(ii) A is compact and continuous, 

(iii) B is a contraction mapping. 

Then there exists M∈z  with .BzAzz +=  

Concerning the terminology of compact mapping used in this 
theorem, we mean the following. Let A be a mapping from a set M  into a 
topological space X. If ( )MA  is contained in a compact subset of X, we say 

that A is compact. 
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Definition 1. Let ( )d,M  be a metric space and .: MM →B  B is 

said to be large contraction if ,, M∈ϕφ  with ,ϕ≠φ  then ( ) ≤ϕφ BBd ,  

( )ϕφ,d  and if for all ,0>ε  there exists 1a <δ  such that 

[ ( ) ] ( ) ( ).,,,,, ϕφδ≤ϕφ⇒ε≥ϕφ∈ϕφ dBBddM  

The next theorem is appropriate for our equation since it requires a 
large contraction instead of contraction. 

Theorem 2. Let M  be a bounded convex nonempty subset of a 
Banach space ( )., ⋅B  Suppose that A and B map M  into B  such that 

(i) ,, M∈yx  implies ,M∈+ ByAx  

(ii) A is compact and continuous, 

(iii) B is a large contraction mapping. 

Then there exists M∈z  with .BzAzz +=  

We shall see later that the concept of large contraction in Theorem 2 

is necessary when ( )( ) ( ).5 txtxh =  

2. Existence of Periodic Solutions 

Define { ( ) ( ) ( )},:, tTtCPT ϕ=+ϕ∈ϕ= RR  where ( )RR,C  is the 

space of all real valued continuous functions on .R  Then TP  is a Banach 

space, when endowed with the supremum norm 

[ ]
( ) ( ) .supsup

,0
txtxx

tTt R∈∈
==  

The next lemma is essential to the construction of our mapping that is 
required for the application of Theorem 2. To have a well behaved 
mapping, we must assume that 

( ) ,0
0

≠∫ dssa
T

  (2.1) 

throughout this section. Let the mapping H be defined by 
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( )( ) ( ) ( )( ).uxhuxuxH −=   (2.2) 

Lemma 1. Assume (2.1). If ,TPx ∈  then ( )tx  is a solution of 

Equation (1.1), if and only if 

( )
( )

( )
( ) ( )( ) ( ) ( )( ) ( ) .,

1 0

duupdssxgsuBuxHua

e

etx
u

dssa

dssaTt

t T

Tt
u









++

−

= ∫∫ ∞−−

−
+

∫

∫
+

 

(2.3) 

Proof. Let TPx ∈  be a solution of (1.1). We rewrite (1.1) in the form 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )., tpdssxgstBuxHtatxtatx
t

++=+′ ∫ ∞−
 

Next, we multiply both sides of the resulting equation with 
( )

,0 dssat

e∫  and 

then integrate from t to Tt +  to obtain 

( )
( )

( )
( )dssadssa tTt

etxeTtx ∫∫
−+

+
00  

[ ( ) ( )( ) ( ) ( )( ) ( )]
( )

., 0 dueupdssxgsuBuxHua
dssauTt

t

u
∫

++= ∫∫ ∞−

+
 

Using the fact that ( ) ( )txTtx =+  and 
( ) ( )

,0 dssadssa TTt
t ee ∫∫

=
+

 the above 

expression can be put in the form of Equation (2.3). The proof is complete 
by reversing every step.   

First, we note that for [ ]Tt ,0∈  and [ ],, Tttu +∈  we have 

( )

( )

( )

( )
.:

11 0

2
0

0

M

e

e

e

e
dssa

dssa

dssa

dssa

T

T

T

Tt
u

=

−

≤

−
∫

∫

∫

∫

−−

−
+

  (2.4) 

Let J be a positive constant. Define the set 
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{ }.: JPTJ ≤ϕ∈ϕ=M   (2.5) 

Obviously, JM  is bounded and convex subset of the Banach space .TP  
Let the map TJ PA →M:  be defined by 

( ) ( )
( )

( )
[ ( ) ( )( ) ( )] ,,

1 0

duupdssgsuB

e

etA
u

dssa

dssaTt

t T

Tt
u

+ϕ

−

=ϕ ∫∫ ∞−−

−
+

∫

∫
+

  (2.6) 

for .R∈t  In a similar way, we set the map TJ PB →M:  

( ) ( )
( )

( )
( ) ( )( ) .,

1 0

R∈/

−

=/
∫

∫

−

−
+

+

∫ tduuvHua

e

etvB
dssa

dssaTt

t T

Tt
u

  (2.7) 

It is clear from (2.6) and (2.7) that φA  and vB /  are T-periodic in t. 

We assume that ( )xg  satisfies local Lipschitz condition in x, i.e., there 
is a positive constant k such that 

( ) ( ) .,for, Jwzwzkwgzg M∈−≤−   (2.8) 

Then for ,JM∈ϕ  we obtain the following: 

( )( ) ( )( ) ( ) ( )00 ggtgtg +−ϕ=ϕ  

( )( ) ( ) ( )0,0, tgtgtg +−ϕ≤  

( ) .0gkJ +≤   (2.9) 

For simplicity, we let 

(
( )

) .1: 10 −−∫
−=η

dssaT

e  

Lemma 2. Suppose that there exists a positive constant L such that 

( ) ,, LdsstB
t

≤∫ ∞−
  (2.10) 

then the mapping A, defined by (2.6), is continuous in .JM∈ϕ  
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Proof. Let ., JM∈ϕφ  Then, from (2.6), we have 

( ) ( )
( )

( )
( ) (( ))dsdusgsuB

e

etAtA
u

dssa

dssaTt

t T

Tt
u

φ

−

≤ϕ−φ ∫∫ ∞−−

−
+

∫

∫
+

,

1 0

 

( )

( )
( ) ( )( )dsdusgsuB

e

e u

dssa

dssaTt

t T

Tt
u

ϕ

−

− ∫∫ ∞−−

−
+

∫

∫
+

,

1 0

 

( )

( )
( ) ( )( ) ( )( ) dsdusgsgsuB

e

e u

dssa

dssaTt

t T

Tt
u

ϕ−φ

−

≤ ∫∫ ∞−−

−
+

∫

∫
+

,

1 0

 

,ϕ−φ≤ MLKT  

where M is given by (2.4).   

In next two results, we assume that for all R∈t  and Jv M∈/  

[ ( ) ( )( ) ( ( ) )]
( )

,0 JduegKJLuvHua
dssaTt

t

Tt
u ≤++/η
∫

+
−+

∫   (2.11) 

where J is defined by (2.5). 

Lemma 3. Assume (1.2), (2.1), (2.8), (2.10), and (2.11). Then A is 
continuous in JM∈ϕ  and maps JM  into a compact subset of .JM  

Proof. Let .JM∈ϕ  Continuity of A in JM∈ϕ  follows from Lemma 

2. Now, by (2.9), (2.10), and (2.11), we have ( ) ( ) .JtA <ϕ  Thus, 

.JA M∈ϕ  Let .,2,1, …=∈ϕ ii M  Then from the above discussion, we 

conclude that 

.JA j ≤ϕ  

This shows ( )JA M  is uniformly bounded. Left to show that ( )JA M  is 

equicontinuous. A differentiation of (2.6) with respect to t yields 
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( ) ( ) ( ) ( ) ( )tAtatA jj ϕ−=′ϕ  

( )
( ) ( )( )dssgstB

e

Tt

dssaT φ

−

+ ∫
+

∞−−∫
,

1

1

0

 

( )

( )
( ) ( )( )dssgstB

e

e t

dssa

dssa

T

Tt
t

φ

−

+ ∫ ∞−−

−

∫

∫
+

,

1 0

 

( ) ( )( ) ,0 QgkJMLAa i ≤++η+ϕ≤  

for some positive constant Q. Thus, the estimation on ( ) ( )tA i
′ϕ  implies 

that ( )JA M  is equicontinuous. Then using Arzela-Ascoli theorem, we 

obtain that A is a compact map. The proof is complete.   

Next result gives a relationship between the mappings H and B in 
the sense of large contraction. 

Lemma 4. Let a be a positive valued function. If H is a large 
contraction on ,JM  then so is the mapping B. 

Proof. If H is a large contraction on ,JM  then for ,, Jyx M∈  with 

,yx ≠  we have .yxHyHx −≤−  Hence, 

( ) ( )
( )

( )
( ) ( ) ( ) ( ) ( ) duuyHuxHua

e

etBytBx
dssa

dssaTt

t T

Tt
u

−

−

≤−
∫

∫

−

−
+

+

∫
01

 

( )

( )
( )duuae

e

yx dssaTt

tdssa

Tt
u

T
∫

∫

+
−+

− ∫
−

−
≤

01

 

.yx −=  

Taking supremum over the set [ ],,0 T  we get that .yxByBx −≤−  

One may also show in a similar way that 
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yxByBx −δ≤−  

holds, if we know the existence of a 10 <δ<  such that for all 0>ε  

[ ] .,, yxHyHxyxyx J −δ≤−⇒ε≥−∈ M  

The proof is complete.   

Theorem 3. Assume the hypotheses of Lemmas 1-4. If B is a large 
contraction on ,JM  then (1.1) has a periodic solution in .JM   

Proof. Let A and B be defined by (2.6) and (2.7), respectively. Then 
using (2.11) and the periodicity of A and B, we have for Jv M∈/ϕ,  that 

.: JJvBA MM →/+ϕ  

Hence an application of Krasnoselskii fixed point theorem implies the 
existence of a periodic solution in .M  This completes the proof.   

3. Examples 

In this section, we provide several examples as application to our 
theory. In the first example, we explicitly define h and then show that the 
function H defines a large contraction. The next example can be found in 
[1]. For completeness, we give the full details here. First, we begin with 

the case ( ) .5uuh =  

Example 1. Let .  denote the supremum norm. If 

( ){ },5and,: 4/1−≤φ∈φφ= RRM C  

and ( ) ,5uuh =  then the mapping H defined by (2.2) is a large contraction 

on the set .M  

Proof. For any reals a and b, we have the following inequalities: 

( ) ( ),4640 22444 babaabbaba ++++=+≤  

and 
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( ) .224
442244

22 bababababaab +≤++≤++−  

If M∈yx,  with ,yx ≠  then ( )[ ] ( )[ ] .144 <+ tytx  Hence, we arrive at 

( ) ( ) 







−
−−−≤− vu

vuvuvHuH
55

1  

[ ( )]22441 vuvuuvvuvu ++−−−−=  

( ) ,21
44

vuvuvu −≤






 +
−−≤  (3.1) 

where we use the notations ( )txu =  and ( )tyv =  for brevity. Now, we 

are ready to show that H is a large contraction on .M  For a given 
( ),1,0∈ε  suppose M∈yx,  with .ε≥− yx  There are two cases: 

(a)   ( ) ( ) ,somefor,2 R∈−≤ε ttytx  

or 

(b)   ( ) ( ) .somefor,2 R∈ε≤− ttytx  

If ( ) ( )tytx −≤ε
2  for some ,R∈t  then 

( ) ( ) ( ) ( ( ) ( ) )4444 82 tytxtytx +≤−≤ε  

or 

( ) ( ) .
27

444 ε≥+ tytx  

For all such t, we get by (3.1) that 

( )( ) ( )( ) ( ) ( ) .
2

1 7

4








 ε−−≤− tytxtyHtxH  
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On the other hand, if ( ) ( ) 2
ε≤− tytx  for some ,R∈t  then along with 

(3.1), we find 

( )( ) ( )( ) ( ) ( ) .2
1 yxtytxtyHtxH −≤−≤−  

Hence, in both cases, we have 

( )( ) ( )( ) .2
1,

2
1min 7

4
yxtyHtxH −







 ε−≤−  

Thus, H is a large contraction on the set M  with .2
1,

2
1min 7

4







 ε−=δ  

The proof is complete.   

Next, we make use of Example 1 and Theorem 3 to show that the 
totally nonlinear infinite delay Volterra integro-differential equation 

( ) ( ) ( ) ( ) ( ) ( ),, 55 tpdssxstBtxtatx
t

++−=′ ∫ ∞−
  (3.2) 

has a T-periodic solution. First, we assume that 

( ) ( ( ) ( ) )
( )

.5,554 4/14/54/5 −−

∞−

−
+

− ≤+η+
∫

+

∫∫ dueupdssuB
dssauTt

t

Tt
u  

(3.3) 

Example 2. Let the set M  be a subset of TP  and defined as in 

Example 1. Assume (1.2), (2.1), and (2.8). Suppose ( ) 0>ta  for all t. If 

(3.3) holds for all ,R∈t  then Equation (3.2) has a T-periodic solution in 
.M  

Proof. Set 

( ) ,5xxg =  

and 

( )( ) ( ),5 uvuvh /=/  
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and define the mapping B as in (2.7). First, for ,M∈x  we have 

( ) .5 4/55 −≤tx  

Accordingly, define the two mappings A and B by (2.6) and (2.7), 
respectively. It is easy to see that 

( )( ) ( ) ( ) ( ) .allfor,54 4/55 M∈≤−= − xtxtxtxH  

For M∈ϕφ,  and for ( ) ,0≥ta  we have 

( ) ( ) ( ) ( )tBtA ϕ+φ  

( )
( )

( )
( )

dueua

e

dssaTt

tdssa

Tt
u

T
∫

∫

+
−+

−

−

∫
−

≤
01

54 4/5
 

( ( ) ( ) )
( )

dueupdssuB
dssauTt

t

Tt
u∫
+

−

∞−

−
+

+η+ ∫∫ ,5 4/5  

( ) ( ( ) ( ) )
( )

dueupdssuB
dssauTt

t

Tt
u∫
+

−

∞−

−
+

− +η+= ∫∫ ,554 4/54/5  

J=≤ − :5 4/1  by (3.3). 

Thus, (2.11) is satisfied. Since a is assumed to be positive valued, we get 
by Lemma 4 that B is a large contraction on the set .M   

Example 3. Let the set M  be a subset of TP  and defined as in 
Example 1. Assume (1.2), (2.1), and (2.8). Suppose ( ) 0>ta  for all t. If 
there exists a positive constant D such that 

( ( ) ( ) ) ( ) ,allfor,,5 4/5 R∈≤+∫ ∞−

− ttatpdsstBD
t

 

and 

( ) ,5154 4/14/5 −− ≤+ D  

then (3.3) has a T-periodic solution in .M  
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Proof. We already know that H defines a large contraction. For 
M∈ϕφ,  and for ( ) ,0>ta  we have 

( ) ( ) ( ) ( )tBtA ϕ+φ  

( )
( )

( )
( )

dueua

e

dssaTt

tdssa

Tt
u

T
∫

∫

+
−+

−

−

∫
−

≤
01

54 4/5
 

( )
( ( ) ( ) )

( )
dueupdssuB

e

dssauTt

tdssa

Tt
u

T
∫

∫

+
−

∞−

−
+

−
+

−

+ ∫∫ ,5

1

1 4/5

0

 

( ) ( )
( )

( )
due

e

ua
D

dssa

dssa

Tt

t

Tt
u

T
∫

∫

+
−

−

+
−

−

+= ∫
01

154 4/5  

( ) ,:5154 4/14/5 JD =≤+= −−  

which implies that (3.2) holds. The rest of the proof follows from Example 
2.   

We note that in the paper of [1], the authors gave a theorem in which, 
they classify all type of functions h so that the function ( ) ( )xhxxH −=  
defines a large contraction. 
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